Displacement Reactions of cis- $[Pt^{II}Cl(R'SCSO)(PR_3)_2]$ $(R = Ph, C_6H_{11}; R' = aryl)$ **with Nucleophiles.** Formation with $R' S^-$ of an η^2 -CS Coordinated Sulphine $(R'S)_{2}C=S=O$ **by Reductive Coupling** [**1]**

JOHAN W. GOSSELINK⁺, FRANS PAAP and GERARD VAN KOTEN*

Anorganisch Chemisch Laboratorium, University of Amsterdam, J. H. van? Hoff Instituut, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

Received October 1,198l

A cyclic process to synthesize sulphines in the coordination sphere of platinum has been tested by stepwise reactions. Ste *t'p imami* nuo ocen restea cy $\frac{1}{\pi}$ culphines $\frac{\sin\theta}{\sin\theta}$ (P_iII)(I(P 'SCSO)(PP), 1, 1 (P = $P(H_{ij}: R' = p_{ij}MeC_iH_{ij})$ were displaced by R^{\prime} ($R^{\prime\prime}$ = p-MeC_{H4}, p-MeOC_H) leading to the m^{2} metallo-sulphines cis- $[Pt^{II}/\Omega P'']/P'\$ SCSO)(PR₂), *l* with only (E)-(Z) isomerization being found and no *scrambling between R'S and RI'S groups.* Step ii: *These metallo-sulphines in the case of* $R = C_6H_{11}$ *were not detected, they are unstable because of the steric interaction between the bulky co-ligands and undergo immediate C-S reductive coupling forming the \$-CS coordinated sulphine compounds* $[Pt^{0}$ $[PC_{6}H_{11}]_{3}]_{2}$ $[(R''S/R'S)CSO]$ *]*. Step iii: *These* latter η^2 -CS coordinated sulphines could be displaced *by* (E)-(R'S)CIGS=O *forming the highly unstable* η^2 -CS compound $[Pt^0[P(C_6H_{11})_3]_2[(E]/R^{\prime}S)$ -*ClCSO]] which undergoes an immediate C-Cl oxidative addition and reforms the starting metallo-sulphine* cis - Pt^HC $d(R'SCSO)$ $\{P(C_6H_{11}/_3\}_2\}$ (Step iv). *Two complications prevent this cyclic process becoming a catalytic cycle:* (i) *slow* cis-to-tram *isomerization* of the metallo-sulphines cis- $[Pt^{II}Cl/R'SCSO)[P/C_6 H_{11}/3$ ₂*l* and (ii) decomposition during the sulphine *displacement (Step* iii). *Test reactions showed that the sulphine* $(R'S)$ *₂* $C=S=O$ *is formed faster via direct displacement in* (E) *-* $(R'S)CIC = S = O$ *by* $R''S$ *than by the cyclic process. When the bidentate ligand Et,- NC& is used as dispkxing ligand dissociation of one*

*PR3 group is initiated instead of C-S reductive coupl*ing, forming the metallo-sulphines $[Pt^{II}(S, CNEt_2)$ - $(R'SCSO/(PR₃))$.

Introduction

The coordination chemistry of sulphines, $XYZ=$ $S=O(X, Y = ary), S-aryl, S-alkyl, Cl)$ is currently being studied in our laboratory. Several coordination modes of these heterocumulenic systems have been established, *i.e.* η^2 -CS to $M^0(PR_3)_2$ (M = Pt, Pd; R = C_6H_{11} , Ph), $[1-3, 5-7]$ o-S to trans-M^ICl(PR₃)₂ $(M = Rh, Ir; R = C_6H_{11}, i-C_3H_7)$ [1, 8] and for the sulphines containing one or two C-S side bonds coordination *via* η^3 -SCS to Rh^ICl(PR₃) (R = C₆H₁₁, i- C_3H_7) [8]. Furthermore, sulphines containing C-S and/or C-Cl side bonds undergo, when coordinated to $M^0(PR_3)$ ₂ (M = Pt, Pd; R = Ph, C_6H_{11}) C-S and C-Cl, oxidative addition resulting in formation of metallo-sulphines *cis-* and *trans-[M"X(YCSO)-* $(PR₃)₂$] (X = S-aryl, S-alkyl, Cl; Y = aryl, S-aryl) $[2, 3, 6, 7]$, as well as C-S reductive coupling (the reverse process). No evidence has been found for the C-Cl reductive coupling process.

In the literature two examples of the synthesis of sulphines in a metal coordination sphere have been reported. Dittmer *et al.* synthesized $[Fe^0(CO)_3[H_2-A]$ $V(\text{H})C(\text{H})-\text{S}=\text{O}[1]$ by oxidizing the complex [Fe]^{0} Ω (H)C(H)C(H)=S) showing the complete product Ω $(CO)_{3}$ {H₂CC(H)C(H)=S}] [9], whereas Götzfried and Beck synthesized [Pt⁰(PPh₃)₂(C₁₂H₈CSO)] (C₁₂H₈= fluorene) by reaction of $[Pt^0(PPh_3)_2(SO_2)]$ with $(Me_3Si)(C_{12}H_8)C^L$ [10].

In view of the considerable insight gained into the factors determining the coordination mode of the sulphine as well as the cleavage and formation of reactive side bonds $[1-8]$, we directed our research to the synthesis of novel, unstable sulphines in the coordination sphere of a metal.

0020-1693/82/0000-0000/\$02.75 0 Clsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

 $\dagger(E)$ and (Z) refer to the configuration around the sulphine C=S bond. If these are placed inside the molecular formula, this indicates that the sulphine has the (E) or (Z) configuration and is coordinated as such $(\eta^2$ -CS, σ -S, η^3 -SCS). If these are placed before the molecular formula, this indicates that the PtXC=S=O entity as a whole has the (E) or (Z) configuration with σ -C coordination.

⁺Present address: Koninklyke/Skell Laboratorium, Badhuisweg 3,1031CM, Amsterdam, The Netherlands.

Fig. 1. A possible route for the synthesis of sulphine (R'S)YC=S=O in the coordination sphere of Pt.

Displacement of the Cl atom in cis -[Pt^{II}Cl(R'- $\text{Displacement of the C4 and the C5-F1-C4}$ $\frac{1}{1!}$ $\frac{1}{2}$ is $\frac{1}{2}$ $\frac{1}{2}$ If $\lim_{x \to 0} \log \frac{1}{x}$ and $\lim_{x \to 0} \log \frac{1}{x}$ are due to contain the coupling coupling $\lim_{x \to 0} \log \frac{1}{x}$ 1). Initiation of a subsequent reductive coupling would then result in formation of a $C-Y$ bond form- $\frac{1}{2}$ new sulphine $\frac{2}{3}$ coordinated to $\frac{1}{2}$ coordinated to Pt'(PR\ (reaction is Fig. 1). When a displacement of this r_1 is the set of this thing of the thing of this continuous continuou (reaction *ii* in Fig. 1). When a displacement of this sulphine $(R'S)YC=S=O$ by $(R'S)ClC=S=O$ (reaction *iii*) in Fig. 1) could be accomplished, both the unstable η^2 -CS complex $[Pt^0(PR_3)_2\{(R'S)CISO\}]$, reforming via Complex μ t (FR3)2)(K S)Cl3Of , feroming μ C-C oxidative addition else could consider $(PR₃)₂$], and the new sulphine $(R'S)YC=S=O$, could be synthesized. in the results of a first of a fi
It is a first of a fir

In this paper we present the results of a first exploration of this synthetic route, involving attempts to test it for the syntheses of already known sulphines. Each of the steps shown in Fig. 1 could be demonstrated in separate reactions. It was hoped that, based on these results, the synthesis of otherwise unstable sulphines e.g. $(R''O)(R'S)(RC=$ $S=O$ could also be achieved in the coordination sphere of a metal.

Experimental

Infrared spectra were recorded on a Perkin-Elmer 283 spectrophotometer. 'H NMR spectra were recorded on a Varian T-6OA and a Bruker WM 250, ³¹P NMR spectra on a Varian XL 100 spectrometer. Elemental analyses were carried out by the Analytical Section of the Institute for Organization Chemistry TNO, Utrecht (The Netherlands).
Utrecht (The Netherlands). Utrecht (The Netherlands).
The sulphines $(p\text{-}MeC_6H_4S)_2C=S=0$ [11] and the

 μ_{min} and μ_{min} (μ_{max}) and μ_{min} (σ)- μ_{min} (σ)- μ_{min} (σ)- σ (σ)- σ)- σ $\frac{1}{2}$ (Ref.) and $\frac{1}{2}$ (Ref.) $\frac{1}{2}$ (R) $\frac{1}{2}$ (R) $\frac{1}{2}$ (R) $\frac{1}{2}$ (R) $\frac{1}{2}$ $(PPh_3)_2$] $(R' = Ph, p-MeC_6H_4)$ [4] and $cis(E)$ -
trans- (E) - and trans- (Z) -[Pt¹¹Cl(p-MeC₆H₄SCSO) $\{P(C_6H_{11})_3\}_2$ [5] were prepared according to literature procedures. The reactants $KSC_6H_4Me_7P$ and $KSC₆H₄OMe-p$ were prepared by the reaction of M_{\odot} C,H, $\sigma_{\rm H}$ and $\sigma_{\rm H}$ and $\sigma_{\rm H}$ and $\sigma_{\rm H}$ and $\sigma_{\rm H}$ with K $\sigma_{\rm H}$ and $\sigma_{\rm H}$ μ_{rel} reagants and ρ_{rel} reading and μ_{rel}

(i) General procedure for reactions between [pt"- $C(p-MeC_6H_4SCSO/(PR_3)_2)$ ($R = Ph, C_6H_{11}$) and *KSR' (R' =* **p-MeC,** *H4, y-MeOC6 H4)*

 $T_{\text{av}} = p m c c_6 H_4$, $p m c c c_6 H_4$,
 $T_{\text{av}} = 0.000$ (Pe) $R = Pl$ CeHris 0.1 mmol) in CDC1 (cu. 2 ml) or $(R = Ph, C_6H_{11}; 0.1 \text{ mmol})$ in CDCl₃ (ca. 2 ml) or a mixture of CDCl₃ (ca. 1 ml) and CD₃OD (ca. 1 ml) was added an excess of KSR' (R' = p-MeC₆H₄ or p -MeOC₆H₄; ca. 0.5 mmol). The reaction mixture was stirred for several days. Unreacted KSR' was then removed by filtration. ³¹P and ¹H NMR spectra were recorded to identify the products by comparison with the data of the pure compounds. In the case of $P = P_1 + 3$ dition of a layer of n-pentane resulted \mathcal{C} and a period of several days in the period of several days in the precipitation of

metallo-sulphines. Elemental the substituted analyses were in accord with a formulation of $[Pt^{II}]$. $(SR')(p-MeC₆H₄SCSO)(PPh₃)₂$.

(ii) Displacement of $(p-MeC_6H_4S)_2C=5=O$ in [Pt⁰- ${P(C_6H_{11}/_3)}_2$ (p-MeC₆H₄S)₂CSO}] by (E)-(p-MeC₆- H_4S CC=S=O

A mixture of $[Pt^{0} \{P(C_{6}H_{11})_{3}\}_{2}^{2}\{(p \text{-} M e C_{6}H_{4}S)_{2}$ CSO}] (0.1 mmol) and (E) - $(p$ -MeC₆H₄S)ClC=S=O (0.1 mmol) was stirred in CDCl₃ (0.5 ml) . Displacement of the η^2 -CS coordinated sulphine (p-MeC₆H₄-S)₂C=S=O by the sulphine (E) - $(p$ -MeC₆H₄S)ClC=S=O was followed by $31P$ NMR for 7 days. The reaction products were identified by comparison of the ³¹P NMR spectra of the reaction mixture with those of the pure complexes $[{\rm Pt}^0({\rm P}(C_6H_{11})_3)_2](p MeC_6H_4S_2CSO$], cis-(E)-, trans-(E)- and trans-(Z)- $[Pt^{II}Cl(p-MeC_6H_4SCSO)[P(C_6H_{11})_3]_2].$

(iii) Displacement of Cl in (E)-{p-MeC₆H₄S)ClC=S=O by p-MeOC₆H₄S in CDCl₃ with or without cis-(E)- $[Pt^{II}Cl(p-MeC_6H_4SCSO)[P(C_6H_{11}/3]_2]$

Two mixtures of (E) - $(p$ -MeC₆H₄S)ClC=S=O (0.75 mmol) and KSC_6H_4OMe-p (0.75 mmol) in CDCl₃ (1 ml), one of which contained $cis(E)$ -[Pt^{II}Cl(p- $MeC_6H_4SCSO){P(C_6H_{11})_3}_2$ (0.18 mmol) were stirred for 16 hours. Undissolved KSC₆H₄OMe-p and KCl were filtered off and the reaction mixtures, which contained mainly (E) - and (Z) - $(p$ -MeOC₆H₄S)- $(p\text{-}MeC_6H_4S)C=S=O$, were investigated by ¹H NMR spectroscopy.

(iv) Synthesis of $(E)/Pt^{II}/S_2$ CNEt₂ $/(R'SCSO)/PR_3)$ $(R = R' = Ph; R = C_6H_{11}, R' = p \cdot MeC_6H_4)$
A mixture of cis (E) [Pt¹¹Cl(R'SCSO)(PR₃)₂] (ca.

0.2 mmol; $R = R' = Ph$; $R = C_6H_{11}$, $R' = p$ -Me C_6H_4) and NaS₂CNEt₂·3H₂O (ca. 0.6 mmol) were stirred in a mixture of $CH₂Cl₂$ (ca. 15 ml) and CH₃OH (ca. 15 ml) for 4 days. After the solvents had been removed *in vacuo* benzene was added (ca. 15 ml). The mixture was stirred for $\frac{1}{2}$ h and then filtered to remove NaCl and unreacted NaS₂CNEt₂. The filtrate was concentrated and stirred for one night. In the case of $R = R'$ = Ph impure white (E) -[Pt¹¹(S₂CNEt₂)- $(PhSCSO)(PPh₃)$] precipitated, which could be crystallized from $CDCl₃/n$ -pentane as orange crystals. Anal. Calc. for (E) -[Pt¹¹(S₂CNEt₂)(PhSCSO)-(PPh₃)] · 0.1CDCl₃: C, 45.93; H and D, 3.88. Cl, 1.35; N, 1.78%; M, 788. Found: C, 46.2; H and D, 3.97; Cl, 1.48; N, 1.65%; M(CHCl₃), 750. In the case of $R = C_6H_{11}$ and $R' = p$ -MeC₆H₄ addition of n-pentane to the C_6H_6 solution resulted in precipitation of impure, white (E) -[Pt¹¹(S₂CNEt₂)(p-MeC₆H₄- $SCSO[{P(C_6H_{11})_3}]$ which could be recrystallized from $CDCl₃/n$ -pentane as orange crystals. The

white compound was analyzed by spectroscopic methods, which also showed the presence of some (Z) isomer.

(v) Synthesis of cis- (Z) -[Pt^{II}I(p-MeC₆H_aSCSO)- (PPh_3)

A suspension of cis- $[Pt^{II}Cl(p-MeC₆H₄SCSO)]$ $(PPh₃)₂$] (0.2 mmol; mixture of (E) and (Z) stereoisomers) and KI (100 fold excess) in CHCl₃ (2 ml) was stirred for 3 days. The mixture was filtered to remove KCl and unreacted KI, the solvent was removed in vacuo and the residue washed with n-pentane. Spectroscopic methods showed that the residue also contained, in addition to the major product $cis(Z)$. $[Pt^{11}I(p\text{-}MeC_6H_4SCSO)(PPh_3)_2]$, a minor amount of the $cis(E)$ stereoisomer. The product could be purified by recrystallization from $CDCl₃/n$ -pentane yielding orange crystalline cis- $[Pt^{II}I(p \cdot MeC_6H_4 SCSO(PPh₃)₂$, as the (Z) with a small amount of the (E) stereoisomer.

Results

(i) The formation of cis- $[Pt^{II} (SC_6H_4X-p)/(p-MeC_6H_4-P)$ $SCSO/(PPh_3)_2$ via displacement of Cl in cis-[Pt^{II} - $Cl(p-MeC_6H_4SCSO/|PPh_3|_2)$ by SC_6H_4X -p(X = Me, MeO_l

The reaction of $cis(Z)$ -[Pt^{II}Cl(p-MeC₆H₄SCSO)- $(PPh_3)_2$ containing a minor amount of the *cis* (E) isomer with excess of KSC_6H_4X-p (X = Me, OMe) in CDCl₃ resulted in the displacement of Cl and formation of the metallo-sulphines $cis(E)$ - and (Z) -[Pt^{II}(SC₆H₄X-p)(p-MeC₆H₄SCSO)(PPh₃)₂] (ca. 1:4 molar ratio for $X = Me$; ca. 1:1 molar ratio for $X = MeO$; see Fig. 2a).

The products present in the reaction mixtures were identified by comparison of the ³¹P and ¹H NMR spectra with those of equimolar mixtures of cis (E)- and -(Z)- $[Pt^{II}(SC_6H_4Me-p)(p\text{-}MeC_6H_4SCSO)$ - $(PPh₃)₂$] in CDCl₃ and an equimolar mixture of cis-
(E)- and -(Z)-[Pt¹¹(SC₆H₄OMe-p)(p-MeC₆H₄SCSO)- $(PPh₃)₂$] and cis (E) and (Z)- $[Pt^{II}(SC₆H₄Me-p)$. $(p\text{-MeOC}_6H_4SCSO)(PPh_3)_2$] in CDCl₃ [4]. ³¹P NMR spectra showed that even after ca. $\frac{1}{2}$ h. 50% of the Cl atoms in the starting metallo-sulphines had already been displaced, but nevertheless the reaction mixtures were stirred for 3 days. The absence of ν (Pt-Cl) absorption in the IR spectra of the isolated products confirmed that they contained no Cl. The ¹H NMR spectra recorded on the final reaction mixtures showed the presence of unracted KSC_6H_4 -X-p, as well as unidentifiable materials which are probably products of the reaction of KSC_6H_4X-p with the solvent.

Product identification in the case of $X = MeO$ needs some explanation. The ³¹P NMR spectra recorded on the final reaction mixtures showed two AB resonance patterns (complete with Pt satellites) consistent with the presence of one (E) and of one (Z) metallo-sulphine [4]. The ¹H NMR spectra contained no MeO resonances lower than $\delta = 3.9$ ppm,

 $X = Me$, MeO

Fig. 2. The substitution of Cl in cis-[Pt^{II}Cl(p-MeC₆H₄SCSO)(PR₃)₂] (R = Ph, C₆H₁₁) by p-XC₆H₄SK (X = Me, MeO) in CDCl₃.

pointing to the absence of products containing an (E) - $PtC(SC₆H₄OMe-p)=S=O$ fragment. (These fragments were found to have *s-cis* conformations [4] bringing the MeO groups into the deshielding cone of PtII which resulted in a downfield shift of the Me0 protons to 3.9 ppm)*. Because 31P NMR spectra, recorded on the final reaction mixture, were not in accord with the metallo-sulphines cis- (E) - and (Z) -[Pt^{II}(SC₆H₄- $Me-p$)(p- MeC_6H_4 SCSO)(PPh₃)₂], possible products from intermolecular scrambling, the product must cis- (E) -[Pt^{II}(SC₆H₄OMe-p)(p-MeC₆H₄SCSO)be Ph_3)₂], resulting from the direct displacement with KSC_6H_4OMe-p . Because scrambling of the p-XC₆H₄S groups did not occur for the (E) stereoisomers, even after prolonged reaction time (several weeks), this reaction is also not to be expected for the (Z) -stereoisomers. Consequently, the other ³¹P NMR AB resonance pattern is now assigned to cis (Z) -[Pt^{II}(SC₆H₄- $OMe-p$) $(p-MeC₆H₄SCSO)(PPh₃)₂$].

The difference in the $(E)(Z)$ ratio between starting complexes (ca. 1:9) and products $(3:1)$ in the case of a 1:1 mixture of $CDCl₃$ and $CD₃OD$ used as a solvent, showed that the displacement involved (E) - (Z) isomerization.

These displacement reactions established the first step in the syntheses of sulphines in the coordination sphere of Pt (see Fig. 1, reaction i).

(ii) The formation of the η^2 *-CS compound* $[Pt^0]$ *-P(C₆-* F *)* $H_{11}/_{3}$ ₂{ $(p-XC_{6}H_{4}S)(p-MeC_{6}H_{4}S)CSO$ }] via $displacement$ of Cl in cis- $/E$]- $[Pt^{II}Cl(p\text{-}MeC_6H_4 SCSO\{P(C_6H_{11})_3\}_2$ by SC_6H_4X -p (X = *Me, MeO*)

A mixture containing mainly the η^2 -CS compound $[Pt^{0}[P(C_{6}H_{11})_{3}]_{2}$ $[(E)(p\text{-}MeC_{6}H_{4}S)CICSO)]$ and a minor amount of the metallo-sulphine $cis(E)$ - $[Pt^{II}Cl(p-MeC_6H_4SCSO)[P(C_6H_{11})_3]]$, was allowed to react with a suspension of KSC_6H_4X-p (X = Me, MeO) in CDCl₃. Because the η^2 -CS compound undergoes a very fast $C-Cl$ oxidative addition in $CDCl₃$, the metallo-sulphine $cis(E)$ -[Pt^{II}Cl(p-MeC₆H₄- $SCSO{[P(C_6H_{11})_3]}_2$ was the actual starting complex. In the case of $X = Me$ the reaction resulted in formation of the η^2 -CS complex $[Pt^0\{P(C_6H_{11})_3\}_2$ $\{(p\text{-}MeC_6H_4S)_2CSO\}\}\$ while in the case of $X = MeO$ a mixture of $[Pt^0 \{P(C_6H_{11})_3\}_2 \{(E) \cdot (p \text{-} MeOC_6H_4S) (p\text{-MeC}_6\text{H}_4\text{S})\text{CSO}\}]$ and $[\text{Pt}^0\{\text{P}(C_6\text{H}_{11})_3\}_2\{(Z)\cdot(p-1)\}$ $MeOC_6H_4S(p-MeC_6H_4S)CSO$] was obtained (see Fig. 2b). Furthermore, the same impurities, arising from reaction of $KSC₆H₄X-p$ with the solvent, were present as in the case of the reaction with the PPh₃ mplexes (see Section i). The n^2 -CS compounds ere identified by comparison of the $31P$ and $1H$

^{*}In reference 4 values of the MeO resonances for $cis(E)$ and $-(Z)$ -[Pt¹¹(SC₆H₄Me-p)(p-MeOC₆H₄SCSO)(PPh₃)₂] and cis- (E) - and $\{-Z\}$ -[Pt^{II}(SC₆H₄OMe-p)(p-MeC₆H₄SCSO)- $(PPh₃)₂$] were incorrectly tabulated. The correct values are 3.90, 3.68, 3.77 and 3.70 ppm (relative to $Me₄Si$).

159

TARIE I Spectroscopic Data

NMR spectra recorded on the final mixtures, with those of the pure compounds synthesized *via* the reaction of $[Pt^0(P(C_6H_{11})_3)_2]$ and the corresponding free sulphines [5] .

The formation of both stereoisomers of $[Pt^0]P(C_6 H_{11}$)₃}₂{(p-MeOC₆H₄S)(p-MeC₆H₄S)CSO}] starting from pure $cis(E)$ -[Pt^{II}Cl(p-MeC₆H₄SCSO){P(C₆- H_{11})₃}₂] is thought to proceed *via* a displacement of Cl by p -MeOC₆H₄S in combination with an (E) - (Z) isomerization, as also found for the $PPh₃$ complexes, followed by C-S reductive coupling. However, the immediately formed substituted metallo-sulphines $cis(E)$ - and -(Z)-[Pt^{II}(SC₆H₄OMe-p)(p-MeC₆H₄- $SCSO{P(C_6H_{11})_3}_2$ could not be detected in the reaction mixtures with ³¹P NMR spectroscopy, even after a short reaction time $(½ h)$, probably because of high lability of these metallo-sulphines towards C-S reductive coupling (see Fig. 2b).

Besides the displacement reaction a slight amount of the metallo-sulphine, $cis(E)$ -[Pt^{II}Cl(p-MeC₆H₄- $SCSO[PC_6H_{11}]_3{}_2]$ underwent a *cis-to-trans* isomerization followed by an $(E)(Z)$ isomerization, forming the metallo-sulphines *trans-(E)* and $-(Z)$ - $[Pt^{11}Cl(p-MeC_6H_4SCSO)\{P(C_6H_{11})_3\}_2]$ which were identified with ³¹P NMR spectroscopy. This isomerization reaction was already investigated for $cis(E)$ -[Pt^{II}Cl(PhSCSO){P(C₆H₁₁)₃}₂] [5]. The ms-metallo-sulphines are unreactive towards splacement of Cl by SC_6H_4X-p anion, as established by a separate reaction from which the *trans-(E)* isomer could be isolated (see Table I). Earlier attempts to isolate *trans*-metallo-sulphines failed [5].

The displacement reactions discussed in this section, in which bulky phosphines were used as co-ligands, resulted in the syntheses of sulphines in the coordination sphere of platinum (see Fig. 1, reaction *ii).*

(iii) Attempts to synthesize (El- and (Z)-(p-MeOCe- $H_4S/(p\text{-}MeC_6H_4S/C=S=O$ from $(E)/(p\text{-}MeC_6H_4S)$ - $CIC = S = 0$ and KSC_6H_4OMe-p in CDCl₃, via a *cyclic process involving Pt complexes.*

To complete the process shown in Fig. 1, the reaction between the η^2 -CS complex $[\text{Pt}^0(\text{P}(C_6H_{11})_3)_2]$ $\{(p\text{-MeC}_6H_4S)_2CSO\}\$ and the free sulphine (E) - $(p\text{-MeC}_6H_4S)ClC=S=O(1:1 \text{ molar ratio})$ in CDCl₃ has been followed by ³¹P NMR spectroscopy. After 1½ days the resonance patterns of $[Pt^0{P(C_6H_{11})_3}^2]_2$ - $\{(p-MeC_6H_4S)_2CSO\}\}\$, *cis-* and *trans-* (E) -[Pt¹¹Cl- $(p\text{-MeC}_6H_4SCSO){P(C_6H_{11})_3}_2$ (ca. 1:1:0.3 molar ratio) could be identified. Some minor signals obviously belonging to decomposition products were also detected. After 4 days the starting complex and the cis - (E) -metallo-sulphine disappeared and in addition to the *trans-* (E) the *trans-* (Z) metallo-sulphine was also present, as well as an increased amount of decomposition products.

 $31P$ NMR spectroscopy showed that the metallo-sulphine *cis* (E)- $Pt^{11}Cl(p^3MeC_6H_4SCSO){P(C_6H_{11})_3}_2]$ did not react with the free sulphine $(p \text{-} \text{MeC}_6\text{H}_4\text{S})_2$ -C=S=O, but instead underwent a slow *cis-to-trans* and $(E)(Z)$ isomerization, as expected [5]. Because of the great lability of C-Cl sulphine side bonds towards oxidative addition at Pt^0 centres [4, 5], there will never be an equilibrium situation between the n^2 -CS compounds $[\text{Pt}^0(\text{P}(C_6H_{11})_3)_2](p\text{-MeC}_6H_{4}$ -*S*)₂CSO}] and $[Pt^0 \{P(C_6H_{11})_3\}_2 \{(E) \{p \text{-}MeC_6H_4S\}$ Cl-CSO}] and the corresponding free sulphines.

These observations reveal that the metallo-sulphine cis- (E) -[Pt^{II}Cl(p-MeC₆H₄SCSO){P(C₆H₁₁)₃}₂] can be resynthesized by displacement of the formed η^2 -CS coordinated sulphine (p-MeC₆H₄S)₂C=S=O in the final Pt-product by the original sulphine (E) - $(p$ -MeC₆H₄S)ClC=S=O. The cyclic process, shown in Fig. 1, is completed for $Y = SC_6H_4Me$ -p, althoughthe formation of $(p\text{-MeC}_6H_4S)_2C=5=0$ could not be followed because of the complexity of the 'H NMR spectra of the reaction mixture. No isolation attempts were made. The reformed starting complex $cis(E)$ - $[Pt^{11}Cl(p-MeC_6H_4SCSO)[P(C_6H_{11})_3]_2]$ in principle can undergo a displacement reaction with KSC_6H_4 -OMe- p in a second cycle (see Fig. 1).

In order to study whether the cyclic process of Fig. 1 could be converted into a useful route for the synthesis of (E) - and (Z) -(p-MeOC₆H₄S)(p-MeC₆-H₄S)C=S=O, the reaction between (E) - $(p$ -MeC₆H₄S)-ClC=S=O and $\text{KSC}_6\text{H}_4\text{OMe-}p$ (1:1 molar ratio) in the presence of a small amount of *cis-(E)-[Pt"Cl(p-* $MeC_6H_4SCSO{P(C_6H_{11})_3}_2$ was followed by ¹H NMR. In a control experiment the same reaction was studied but in this case no Pt complexes were present. The 'H NMR spectra showed in both reactions the slow formation of (E) - and (Z) - $(p$ -MeOC₆- $H₄S$ $(p$ -MeC₆H₄S $)C$ =S=O and no indication was obtained for any influence of the metallo-sulphine on the product formation.

The study of separate reactions of Fig. 1 for $Y =$ SC_6H_4X-p (X = Me, MeO) showed that the sulphine displacement (see Fig. I, reaction *iii)* is most likely the rate determinant in the product formation *via* the cyclic process. Furthermore, the sulphine displacement proceeded considerably slower than the displacement of Cl in the free sulphine (E) - $\langle p\text{-MeC}_{6}$ -H4S)ClC=S=O of the control experiment (see above). From this it can be concluded that the formation of (E) - and (Z) -(p-MeOC₆H₄S)(p-MeC₆H₄S)C=S=O in the reaction mixture containing (E) - $(p$ -MeC₆H₄S)-ClC=S=O, KSC₆H₄OMe-p, and cis (E) -[Pt^{II}Cl(p-MeC₆- $H_4SCSO\{P(C_6H_{11})_3\}_2$ (a small amount) proceeded almost completely *via* the direct displacement of Cl by SC_6H_4OMe-p in the free sulphine.

(iv) The synthesis of *(E)- and* (Z) *-* Pt^{II} *(S₂ CNEt₂)-* $(R'SCSO/(PR_3)/(R = R' = Ph; R = C_6H_{11}, R' = p MeC₆H₄$)

The reaction of $cis(E)$ -[Pt^{II}Cl(PhSCSO)(PPh₃)₂] with $NaS₂CNEt₂·H₂O$ in a mixture of $CH₂Cl₂$ and

Pt(II)-Sulphine Complexes 161

Fig. 3. The syntheses and structures of (E) - and (Z) -[Pt^{II}(S₂CNEt₂)(R'SCSO)(PR₃)] (R = R' = Ph; R = C₆H₁₁, R' = p-MeC₆H₄).

MeOH yielded the metallo-sulphine (E) -[Pt^{II}(S₂- QFt_2 (PhSCSOVPPh_2)] with small amounts of \overline{Z}) stereoisomer \overline{Z} -[Pt^{II}(S₂CNEt₂)(PhSCSO) (PPh_3)] and an unknown impurity. When the product was recrystallized from CDCl₃/n-pentane the (E) stereoisomer could be collected as orange crystals, of which elemental analyses and molecular weight determinations established the stoichiometry and monomeric nature respectively (see Experimental). The IR spectra of both the impure and recrystallized product showed two ν (CSO) absorptions (see Table I) at 1072 and 943 cm^{-1} and no ν (Pt-Cl) absorption, pointing to an (E) -Pt^{II}(PhSCSO) metallo-sulphine fragment, in which the Cl atom is displaced by the $Et₂NCS₂$ ligand. This ligand is chelate bonded and its IR $\nu(C=N)$ absorption is fully comparable with this absorption in $\text{[Rh}^{\text{III}}\text{Cl}(n^2)$ - $CSMe₂NCS(Me₂NCS₂)(PPh₃)₂$, which contained a chelate bonded dithiocarbamato ligand [12], $[Rh^I(S₂CNMe₂)(PPh₃)₂]$ [13], $[Pt^{II}(S₂CNMe₂)$ - $(PPh_3)_2$ ⁺Br⁻ [13], and $[Pt^{II}(S_2CNMe_2)(\sigma-CMe_2-$ NCS)(PPh₃)] [14], in which the bidentate character was established by spectroscopic methods. The ¹H NMR data showed two unequivalent Et groups, consistent with an asymmetric arrangement around Pt, having one S atom of the dithiocarbamato ligand coordinated *trans* to a PPhs and the other *trans* to the PhS-C=S=O group. The fact that the two Et resonances are anisochronous points to a hindered rotation around the $C^{\cdots N}$ bond, as also found for $[Pt^{II}(S_2CNEt_2)(\eta^2$ -CS-SCNMe₂)(PPh₃)] [14]. The $\overrightarrow{J}(Pt-P)$ value of 3621 Hz found in the $\overrightarrow{31}P$ NMR spectrum of (E) -[Pt^{II}(S₂CNEt₂)(PhSCSO)(PPh₃)]

was comparable with those of 3700-3100 Hz, reportfor P atoms coordinated to P_t ^{II} in $[P_t$ ^{II}H (M_e) N S)NC(S)NMe₂}(PPh₂)] [Pt^{II}Cl{Me₂NC(S)NC(S)₋ $M_{\rm e}$ (PPhs)], and $[{\rm Pr}^{\rm H}({\rm M}_2, {\rm NC(S)}{\rm NC(S)}{\rm N}_{\rm e}]$. $(PPh₃)₂$]^{*}Cl⁻, in which the dithiobiuret ligands are bonded via both S atoms in a chelate fashion [13]. The ³¹P NMR spectrum of the reaction mixture also showed two minor resonances of which one could be assigned to (Z) -[Pt^{II}(S₂CNEt₂)(PhSCSO)(PPh₃)] because of its ${}^{1}J(Pt-P)$ value of 3680 Hz comparable with that of the (E) stereoisomer but the nature of the other product is still unknown. When a mixture of cis- (Z) - and - (E) -[Pt^{II}Cl(PhSCSO)(PPh₃)₂] was used in the displacement reaction, the resonance patterns of (E) - and (Z) -[Pt^{II}(S₂CNEt₂)(PhSCSO)-(PPha)] and the unknown product had almost equal intensity.

Starting from the $P(C_6H_{11})_3$ complex $[Pt^0(P(C_6-H_{11})_3]$ H_{11})₃)₂{(E)-(p-MeC₆H₄S)ClCSO}] the ³¹P NMR spectrum recorded on a CDCl₃ solution of the reaction products (see Experimental) showed a major signal, each with Pt satellites with $\frac{1}{J}(Pt-P)$ values of 3436 and 3500 Hz, respectively. Addition of a layer of n-pentane to the solution resulted in formation of orange crystals of which the IR spectrum showed two ν (CSO) absorptions at 1063 and 933 cm^{-1} and no ν (Pt-Cl) absorption. Therefore the major ³¹P NMR resonance pattern was assigned to (E) -[Pt^{II}(S₂CNEt₂)(p-MeC₆H₄SCSO){P(C₆H₁₁)₃}] and the minor pattern to the corresponding (Z) stereoisomer.

The difference in chemical shift of the P atom between (E) - and (Z) -[Pt^{II}(S₂CNEt₂)(R[']SCSO)-

Fig. 4. Structures of *cis-*(E)- and $-(Z)$ - $[Pt^{II}]$ $(p-MeC₆H₄$ - $SCSO(L₂]$ (L = PPh₃).

 (PR_3)] defined as $\Delta(P) = \delta(P_E) - \delta(P_Z)$ (where P_E) stands for the P atom in the (E) stereoisomer, and P_Z for that in the (Z) stereoisomer) is found to be -2.9 ppm for R = Ph and -2.7 ppm for R = C_6H_{11} , which is in good agreement with the value of -2.9 ppm found for P atoms *cis* coordinated to a $R'SC =$ S=O fragement in several metallo-sulphines [4, 5].

The differences in 1 J(Pt-P) values between (E) and (Z) -[Pt^{II}(S₂CNEt₂)(R'SCSO)(PR₃)], defined as $\Delta({}^{1}J) = {}^{1}J(Pt-P_{E}) - {}^{1}J(Pt-P_{Z})$, were found to be -59 Hz for R = Ph and -64 Hz for R = C_6H_{11} , values falling to the low end of the range of -118 to -67 Hz found for $\Delta(^1J)$ for P atoms coordinated *cis* to a $R'S - C = S = 0$ fragment in several metallosulphines [4, 5].

(v) *Halogen exchange in cis-[Pt¹¹Cl(p-MeC₆H₄ SCSO)-* $(PPh_3)_2$

The reaction mixture of cis- (E) - and (Z) -[Pt^{II}Cl- $(p\text{-MeC}_6H_4SCSO)(PPh_3)_2$] with a suspension of KI in CDCl₃ resulted in the slow formation of $cis(Z)$ - $[Pt^{II}I(p-MeC_6H_4SCSO)(PPh_3)_2]$ together with a small amount of the $cis(E)$ stereoisomer.

The IR spectrum recorded on the reaction products showed the absence of a ν (Pt-Cl) in agreement with the displacement of Cl. Furthermore, they showed one ν (CSO) absorption at 978 cm⁻¹, characteristic of (Z) metallo-sulphines and weak absorptions at *ca.* 1070 and 945 cm^{-1} , indicative of the presence of an (E) stereoisomer. The ¹H NMR spectra recorded on a CDCls solution of the reaction products showed a major singlet at 2.27 and a minor singlet at 2.61 ppm, assigned to (Z) - and (E) -[Pt¹¹- $I(p\text{-MeC}_6H_4SCSO)(PPh_3)_2$] respectively. The lower field shift of the resonance belonging to the (E) stereoisomer compared to that of the (Z) stereoisomer is caused by a *s-cis* conformation of the p -MeC₆H₄S-C=S=O fragment in the (E) stereoisomer and a *gauche* conformation in the (Z) stereoisomer, which was found for the Cl analogues (see Fig. 4) [4]. Because the (E) stereoisomer is present in a very low concentration, the ³¹P NMR spectrum recorded on a CDCl₃ solution of the final reaction product showed one AB resonance pattern (complete with Pt satellites). This pattern established the (Z)

stereoisomer as being cis (Z) -[Pt^{II}I(p-MeC₆H₄SCSO)- $(PPh₃)₂$. Because the *trans* (Z) isomer is absent, the (E) isomer is also thought to have the PPh₃ groups in *cis* positions. The smaller 'J(Pt-P) value of 2232 Hz was assigned to the P atom *trans* to the C atom, and the other $\{^{1}J(Pt-P) = 3801 \text{ Hz}\}$ to the P atom *trans* to the I atom. This assignment was based on the assumption that the C atom has a greater trans influence than does the I atom. Comparison of the ³¹P NMR data of the $cis(Z)$ isomer with those of its analogue (see Table I) confirmed this assignment: On going from $X = C1$ to $X = I$ in the complexes cis -(Z)-[Pt^{II}X(p-MeC₆H₄SCSO)(PPh₃)₂] the ^fJ(Pt-- P_X) (P atom *trans* to X atom) changed more than the $\mathrm{^{1}J(Pt-P_C)}$ value, *i.e.* 202 Hz decrease versus 30 Hz increase. By contrast the $\delta(P_X)$ value changed less than the $\delta(P_C)$ value, *i.e.* 0.9 ppm versus 5.2 ppm upfield. This is in agreement with the different bulkiness of the halogen atoms which has more influence on the chemical shift of the *cis* ligands than that of the *trans* ligand.

Discussion

In previous reports we showed that n^3 -SCS coordinated sulphines are the most likely key intermediates or transition states in the intramolecular C-S oxidative addition and $(E)(Z)$ isomerization of the η^2 - $\sum_{n=1}^{\infty}$ compounds $[{\bf D}^+$ ⁰(${\bf D}$) $\sum_{n=1}^{\infty}$ (F) or (Z) $\sum_{n=1}^{\infty}$ (R)XCSO¹ as compounds $\left[1 + \left(\frac{2\pi}{3}\right)\right]$ or $\left(-\frac{1}{2}\right)$ or $\left(-\frac{1}{2}\right)$ as $\frac{1}{2}$ as well as the intramolecular C-S reductive coupling
and $(E)(Z)$ isomerization reactions of the corresponding metallo-sulphines (σ -C) *cis*-(E)- and -(Z)- $[Pt^{II}(SR')(XCSO)(PPh_3)_2]$ $(X = aryl, S-aryl; R' =$ aryl, alkyl; $R = Ph$, C_6H_{11}) [5]. Upon formation of cis -[Pt^{II}(SR")(R'SCSO)(PPh₃)₂] by a displacement reaction (see Results section i) only (E) - (Z) isomerization and no scrambling of p -XC₆H₄S (X = Me, MeO) was found. This result is additional support for the overall mechanism. It excludes occurrence of (E) - (Z) isomerization in cis-[Pt^{II}(SR")(R'SCSO)- $(PPh_3)_2$] via η^2 -CS compounds $[Pt^0(PPh_3)_2\{(R''S)$ -(R'S)CSO}] as intermediates because scrambling of R"S and R'S groups would then be expected. This latter possibility was proposed as an alternative route for the (E) - (Z) isomerization in metallo-sulphines [41.

The metallo-sulphines cis- (E) - and - (Z) -[Pt^{II}- (SR'') (R'SCSO){ $PC₆H₁₁$)₃}₂], which were expected to be initially formed *via* displacement of Cl in *cis-* (E) -[Pt^{II}Cl(R'SCSO){P(C₆H₁₁)₃}₂] by R''S, could not be detected. They contain two bulky phosphines in *cis* position leading to a less favourable steric interaction than in the trans metallo-sulphines and the η^2 -CS complexes. In principle two pathways are available for these unstable metallo-sulphines to release the steric interaction; (i) cis-to-trans isomerization as was found for the metallo-sulphine $cis(E)$ -

 $\frac{1}{2}$ t citive coupling $r(t_6 \Pi_1)$ is r_2 in [5]. (*u*) $t-5$ requetive coupling resulting in formation of three-coordinate Pt^0 complexes, the process actually observed. Reduction of steric interaction in the metallo-sulphine cis- (E) -[Pt^{II}Cl(R'SCSO){P(C₆H₁₁)s₂} by Ine $\text{cis}(E)$ -[Pt⁻⁻Ci(K SCSO)[P(C₆H₁₁)3f2] by $\overline{\text{c}}$ requestive coupling is an unit call process, because of the greater reactivity of $C-C1$ compared with C-S side bonds towards oxidative addition to Pt^0 [4, 5]. \mathbf{F} , \mathbf{F} , \mathbf{F} , \mathbf{F} compounds of the n2-CS compounds of the n2-C

The miniculate formation of the η -CS compounds l Γ [C_6 Π]] Π ₂](R \Im)(R \Im C \Im CO) Γ] IIOm the meta -sulphines cis [PU (SR) AR SCSOJ(PC $_6$ H₁₁)₃}₂] is the first example of irreversible $C-S$ sulphine side bond reductive coupling. It is thought to proceed via the same mechanism as was deduced for the $C-S$ reductive coupling in cis - $[Pt^{II}(SMe)]$. $(R'CSO)(PPh_3)_2$ $(R' = aryl)$ [5], *i.e.* C-S reductive coupling followed by gliding of the Pt⁰(PR₃)₂ unit from the C-S side bond along the $S-C=S$ frame to the C=S bond with η^3 -SCS coordinated sulphines. as intermediates or transition states. The reverse occurs when PPh₃ is the co-ligand: The η^2 -CS compounds [Pt⁰(PPh₃)₂{(R'S)(R'S)CSO}] undergo $[Pt^{0}(PPh_{3})_{2}\{(R''S)(R'S)CSO\}]$ irreversible C-S oxidative addition, *via* η^3 -SCS coordinated intermediates. The intramolecular coordinated intermediates. rearrangements of sulphines on $Pt^0(PR_3)_2$ centres can therefore be steered to either $C-S$ bond cleavage or $C-S$ bond formation by using the correct co-ligands. This interesting effect of the phosphine co-ligand is summarized in Fig. 5, taking into account the general mechanism for $C-S$ oxidative addition, reductive coupling and (E) - (Z) isomerization.

The absence of scrambling of $R'S$ and $R''S$ groups also indicated, that the displacement reaction proceeds *via* attack of R["]S on the Pt atom. The alternative process, *i.e.* attack of $R''S$ on the C atom
of the $(R'S)C=S=O$ fragment would lead to formation

 $\sum_{k=1}^{\infty} \frac{f(x)}{x^{k}}$ (κ) sp (κ) sp (κ) spectrum of the secret of th effective scrambling. However, determination of the precise mechanism requires kinetic measurements [15]. In the absence of such information a mechanism for the cis-to-trans isomerization could not be deduced. This isomerization reaction proceeds fortunately at a considerably lower rate
than the displacement reactions. The displacement reactions. $\mathbf{F} = \mathbf{F} \cdot \mathbf{F}$

Ine formation of the metallo-sulphines (E) . and (Z) - $[Pt^{II}(S_2CNEt_2)(R'SCSO)(PR_3)]$ from the displacement reactions with NaS_2CNEt_2 possibly proceeds via intermediates in which two phosphines are coordinated to Pt and the dithiocarbamato coordinated in a monodentate or a bidentate fashion with one S atom on a fifth coordination place (see Fig. 3). In a second step one $PR₃$ group dissociates, thus demonstrating another possibility for diminishing steric interaction between two *cis* positioned bulky $P(C_6H_{11})_3$ groups.

When $R''S$ is the nucleophile the C-S sulphine side bond reductive coupling is the essential step in the synthesis of sulphines in the coordination sphere of Pt according to the cyclic process, shown in Fig. 1. Three side reactions so far prevent this cyclic process becoming catalytic: (i) Isomerization of cis-[Pt^{II}Cl(R'SCSO){P(C₆H₁₁)₃}₂] into trans isomers, the latter being unreactive towards Cl displacement, (ii) decomposition during the displacement of the η^2 -CS coordinated sulphine in
[Pt⁰{P(C₆H₁₁)3}₂{(p-MeC₆H₄S)₂CSO}] by the $[Pt^{0}[P(C_{6}H_{11})_{3}]_{2}[(p\text{-Me}C_{6}H_{4}S)_{2}CSO)]$ original sulphine (E) - $(p$ -MeC₆H₄S $)$ ClC=S=O, which is a very slow reaction compared with the displacement, C-S reductive coupling, and C-Cl oxidative addition reaction, and *(iii)* cis-to-trans isomerization in the formed metallo-sulphines cis [Pt^{II}Y(R'-SCSO)(PR₃)₂], which does not occur in case of $Y = SC_6H_4X-p$, but in principle like side reaction (i) be competitive to the $C-Y$ reductive coupling process*.

Finally, it must be noted that the synthesis of sulphines of the type $(R''S)(R'S)C=S=O$ according to the cyclic process shown in Fig. 1 cannot compete with the direct synthesis of sulphines by known organic routes. This process may prove useful for the syntheses of other sulphines, which either cannot be synthesized by organic routes or which are unstable as free molecules, but are expected to stabilized by coordination to a metal core.

Acknowledgement

We thank Prof. Dr. K. Vrieze for stimulating discussions and we are grateful to Prof. Dr. B. Zwanenburg and Mr. B. H. M. Lammerink of the Department of Organic Chemistry, University of Nijmegen, for their continuous interest, Mr. G. P. C. Dekker for measuring the molecular weights, Mr. J. M. Ernsting for recording the 250 MHz 'H NMR spectra, and Dr. D. M. Grove for critical reading of the manuscript.

References

- Part 7 in the series: Coordination Chemistry of Sulphines. Part 6, J. W. Gosselink, G. van Koten and K. Vrieze, *J. Organomet. Chem., 222, 131 (1981).*
- Part 1, J. W. Gosselink, G. van Koten, K. Vrieze, B. Zwanenburg and B. H. M. Lammerink, J. Organomet. Chem., 179, 411 (1979).
- Part 2, J. W. Gosselink, G. van Koten, A. L. Spek and A. J. M. Duisenberg, *Inorg. Chem., 20, 877* (1981).
- Part 3, J. W. Gosselink, G. van Koten, A. M. F. Brouwers and 0. Overbeek, *J. Chem. Sot., Dalton Trans., 342* (1981).
- 5 Part 4, J. W. Gosselink, H. Bulthuis and G. van Koten, *J. Chem. SOL, Dalton, Trans., 1342* (1981).
- 6 J. W. Gosselink, A. M. F. Brouwers, G. van Koten and K. Vrieze, *J. Chem. Sot., Chem. Commun., 1045 (1979).*
- J. W. Gossehnk, G. van Koten and K. Vrieze, Proceedings of the 21° ICCC, Université Paul Sabatier, Toulouse, France. 1980.305.
- Part 5, J. W. Gosselink, A.M. F. Brouwers, G. van Koten and K. Vrieze. *J. Chem. Sot., Dalton Trans., 397* (1982).
- D. C. Dittmer, K. Takahaski, M. Iwanami, A. I. Tsai, P. L. Chang, B. B. Bildner and I. K. Stamos, *J. Am. Chem. Sot., 95,* 6113 (1973); 98, 2795 (1976).
- 0 F. Götzfried and W. Beck, *J. Organomet. Chem.*, 191, *329* (1980).
- 11 G. E. Veenstra and B. Zwanenburg, *Rec. Trav. Chim., Pays-Bas, 95, 28, 37,* 195, *202* (1976); *Tetrahedron, 34, 1585 (1978).*
- 12 A. W. Gal, A. F. M. J. van der Ploeg, F. A. VoIlenbroek and W. Bosman, *J. Organomet.* Chem., 96, 123 (1975).
- 13 A. W. Gal, J. W. Gosselink and F. A. Vollenbroek, J. *Oraanomet. Chem.. 142. 357 (19171: Inorg. Cim. Acta.* 235 (1979).
- 14 A. W. Gal, Ph.D. Thesis, University of Nijmegen, 70 (1977).
- 15 R. J. Mureinik, *Coord. Chem. Rev., 25,* 1 (1978).

^{*}Preliminary results for $Y = MeO$ showed that in case of $P(C_6H_{11})_3$ as co-ligands instead of C-O reductive coupling cis-to-trans isomerization occurred. Therefore it is impossible to synthesize the unknown sulphine $(R'S)(MeO)C=S=O$ via the cyclic process.